Archaea and the prokaryote-to-eukaryote transition.

نویسندگان

  • J R Brown
  • W F Doolittle
چکیده

Since the late 1970s, determining the phylogenetic relationships among the contemporary domains of life, the Archaea (archaebacteria), Bacteria (eubacteria), and Eucarya (eukaryotes), has been central to the study of early cellular evolution. The two salient issues surrounding the universal tree of life are whether all three domains are monophyletic (i.e., all equivalent in taxanomic rank) and where the root of the universal tree lies. Evaluation of the status of the Archaea has become key to answering these questions. This review considers our cumulative knowledge about the Archaea in relationship to the Bacteria and Eucarya. Particular attention is paid to the recent use of molecular phylogenetic approaches to reconstructing the tree of life. In this regard, the phylogenetic analyses of more than 60 proteins are reviewed and presented in the context of their participation in major biochemical pathways. Although many gene trees are incongruent, the majority do suggest a sisterhood between Archaea and Eucarya. Altering this general pattern of gene evolution are two kinds of potential interdomain gene transferrals. One horizontal gene exchange might have involved the gram-positive Bacteria and the Archaea, while the other might have occurred between proteobacteria and eukaryotes and might have been mediated by endosymbiosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endosymbiotic theories for eukaryote origin

For over 100 years, endosymbiotic theories have figured in thoughts about the differences between prokaryotic and eukaryotic cells. More than 20 different versions of endosymbiotic theory have been presented in the literature to explain the origin of eukaryotes and their mitochondria. Very few of those models account for eukaryotic anaerobes. The role of energy and the energetic constraints tha...

متن کامل

Archaea and the Origin(s) of DNA Replication Proteins

The deepest phylogenetic division in the universal tree (vertical line in Figure 1) is that separating bacteria from the clade comprising archaea and eukaryotes. The prokaryote–eukaryote split (horizontal line in Figure 1), originally delineated on the basis of differences between (eu)bacterial and eukaryotic cellular ultrastructure, is a phenetic dichotomy (see Doolittle, 1996, and references ...

متن کامل

Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: a hypothesis for the origin of cellular domain.

The division of the living world into three cellular domains, Archaea, Bacteria, and Eukarya, is now generally accepted. However, there is no consensus about the evolutionary relationships among these domains, because all of the proposed models have a number of more or less severe pitfalls. Another drawback of current models for the universal tree of life is the exclusion of viruses, otherwise ...

متن کامل

Eukaryotes first: how could that be?

In the half century since the formulation of the prokaryote : eukaryote dichotomy, many authors have proposed that the former evolved from something resembling the latter, in defiance of common (and possibly common sense) views. In such 'eukaryotes first' (EF) scenarios, the last universal common ancestor is imagined to have possessed significantly many of the complex characteristics of contemp...

متن کامل

Supertrees and symbiosis in eukaryote genome evolution.

If we took all of the single copy genes in all sequenced genomes, made phylogenetic trees from them individually, and then made the supertree of those trees, what would we get? Recently, David Pisani and colleagues did that experiment and their results are likely to spark much discussion. Their prokaryote tree looks very familiar, but the genome history of eukaryotes appears dominated by genes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Microbiology and molecular biology reviews : MMBR

دوره 61 4  شماره 

صفحات  -

تاریخ انتشار 1997